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Uncollapsing the wave function
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Abstract

The space quantization induced by a Stern-Gerlach experiment is normally explained by invoking

the “collapse of the wave function.” This is a rather mysterious idea; it would be better to explain

the Stern-Gerlach results without using it.

We re-analyze the Stern-Gerlach experiment using path integrals. We find if we model explicitly

the finite width of the beam, coherent interference within the beam itself provides the space quan-

tization – without need to invoke the collapse. If we insist on employing only wave functions with

the space and spin parts kept forcibly disentangled, we recreate the need to invoke the collapse.

The collapse-free approach makes more specific predictions about the shape and position of the

scattered beams; if the interaction region has finite length, these may be testable.

Pending experimental disambiguation, the chief arguments in favor of the collapse-free approach

are that it is simpler and less mysterious, has no adjustable parameters, and requires the invocation

of no new forces.
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INTRODUCTION

Quantum mechanics is over seventy-five years old but remains something of a mystery.

Much of the difficulty centers around the location of the Heisenberg cut, the boundary

between the quantum and classical realms. The main problem is the existence of such a

boundary in the first place. Given that the world is emphatically quantum mechanical,

there should be no separate domain of competence for classical physics. All classical results

should ultimately be explicated in quantum terms.

The boundary between quantum and classical is normally defined as the point where the

wave function “collapses.” The collapse takes place somewhere between the experiment and

the observer but is unusual among scientific concepts in that it may be found anywhere but

where it is being looked for. The doctrine of the collapse of the wave function may be traced

back to Heisenberg[1], with its mathematical formalization taking place in von Neumann’s

celebrated text[2]. A review of the concept and its history is provided by Jammer[3, 4].

While calculations using the collapse have been successful, it creates a number of con-

ceptual problems[5]:

1. The “measurement” problem: We should not have separate physics for measurement

and process. Measurements are themselves a process and should be described by the

same physics. Whether we call something a “measurement” or a “process” is a matter

of labels; it should not affect the physics.

2. The “event” problem: When does the collapse take place? It must somewhere between

the quantum and classical parts of the analysis, but where in spacetime is the boundary

located? If we have N observers each observing the other N − 1 (and themselves for

good measure) are there N2 collapses?

3. The “preferred basis” problem: If we are looking at a collapse along the z axis, then

how did the system “know” it was to collapse along the z axis? What if it became

confused and collapsed along the y?

In 1935 Einstein, Rosen, and Podolsky[6] famously argued that quantum mechanics was

incomplete in that it did not simultaneously give the values of complementary coordinates,

say x and px. Bohr[7]) famously refuted their objection by observing that a theory may

only be required to predict the results of experimentally measurable quantities (although it

2



is free to introduce as many unmeasurable quantities as convenience suggests). Only to the

extent that x and px are simultaneously measurable is it required that the theory predict

them.

The preferred basis problem represents a different kind of incompleteness. It implies a

requirement that the quantum mechanic employ intuition in deciding how to analyze a given

experiment. This implies that quantum mechanics is not formally complete. To put this

in operational terms: there is not in general a way we could program software to define

the location of the Heisenberg cut. As Pearle[8] puts it: the Copenhagen Interpretation “is

a good practical guide for working physicists. Measurement by an apparatus is like great

art, we know it when we see it – and we have great artists who can bring it about. But, a

complete theoretical description? No.”

In the Stern-Gerlach experiment [9, 10, 11] the collapse is assigned responsibility for the

observed space quantization. The Stern-Gerlach experiment is a particularly good place to

study quantization because in this case many of the usual explanations of quantization are

not available:

1. Quantization is often supplied by a container of some kind: a violin in the case of

musical tones, a “black box” in the case of black body radiation, a microwave cavity

in the case of some mesoscopic cat experiments, the central atomic potential in the

case of Bohr-Sommerfeld quantization. But in the case of the classic Stern-Gerlach

experiment there is no container.

2. In other cases, quantized inputs naturally produce quantized outputs: if an atomic

system is going from one quantized energy level to another the radiation it emits in

so doing is automatically quantized as well. But in the case of the Stern-Gerlach

experiment the inputs are not quantized.

3. The program of decoherence [12, 13, 14, 15, 16] has had significant success in explaining

the tendency of macroscopic systems to focus on a few pointer states. It has been

confirmed experimentally, e.g. [17, 18]. But decoherence is normally held to occur

as a result of interaction with the environment [19, 20, 21, 22]. In the case of the

Stern-Gerlach experiment we may arrange, in principle at least, for the beam to have

minimal interaction with the environment.
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In the Stern-Gerlach effect, therefore, we see space quantization without obvious external

explanation. To reproduce this quantization it would appear we must rely solely on the

collapse of the wave function, naked and inescapable.

One reasonable response to the doctrine of the collapse is to assume it is in some sense

real and to attempt to formalize it well enough to give it “a local habitation and a name.”

This is the approach taken in the spontaneous localization (SL) and continuous spontaneous

localization (CSL) programs: Ghirardi, Rimini, and Weber[23], Pearle[8, 24], and a good

general review in Dickson[25]. While these have not been experimentally confirmed [5,

26], their analyses have helped to highlight the conceptual difficulties associated with the

collapse.

We ourselves were led to consider the problem from the point of view of Cramer’s Transac-

tional Interpretation [27, 28]. We have found this interpretation fruitful but were troubled by

the apparent need to invoke the collapse within it, at least to deal with the Stern-Gerlach

experiment. Given the natural connection between the Transactional Interpretation and

path integrals we tried using path integrals to analyze the problem.

We were a bit surprised to find that there was no need to invoke the collapse; space

quantization appeared spontaneously. Further examination made clear that this result was

not a side-effect of using the Transactional Interpretation or path integrals; it resulted from

using wave functions which modeled explicitly the width of the beam and whose spin and

space components were entangled.

When, as we will show, we restrict the allowed wave functions to include only those in

which spin and space components are disentangled, we recreate the necessity to invoke the

collapse of the wave function. This is reasonable enough. As we know from the program

of decoherence, the boundary between the quantum and classical realms may be defined by

the point at which acceptable accuracy may be achieved even if we restrict the solutions to

those using only disentangled wave functions.

We will begin by examining [a very simple case of] the Stern-Gerlach experiment in

classical terms. Then we will employ path integrals to analyze the experiment. We will

find that space quantization results from coherent interference within the incident beam –

without need for hand work. Then we will find if we insist the spin and space parts of the

wave function be disentangled, we reproduce the need for the collapse. With the location

of the problem tentatively identified as “premature disentanglement,” we will then examine
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FIG. 1: Stern-Gerlach experiment in schematic view

possibilities for experimental test. These will depend largely on what one means by the

“collapse of the wave function,” a concept which resembles a politician in its ability to

dodge sharp questions. The most obvious line of experimental attack is simply to note that

the collapse-free approach makes more specific predictions about the location and shape of

the resulting wave function.

CLASSICAL ANALYSIS OF STERN-GERLACH EXPERIMENT

We begin with the classical problem. This provides us a well-defined starting point, lets

us establish notation, and gives the value of the action along the classical path. A beam

of uncharged spin (2m+ 1)/2 particles is sent in the y direction through an inhomogeneous

magnetic field ~B aligned along the z axis. We assume ~B turns on and off abruptly. Since

the Stern-Gerlach effect is produced only by the part of ~B that varies with z we ignore the

constant part of the field. To satisfy the requirement that∇· ~B = 0 the magnetic field should

include small x and y components, but since we are only interested in points of principle we

ignore these.

If the particles have non-zero magnetic moment ~µ, their motion will be governed by the

Hamiltonian

H =
~p2

2m
− ~µ · ~B (1)

and they will experience a force

~F = ∇
(

~µ · ~B
)

. (2)

For definiteness we will take the beam as going in the +y direction. It will appear at

y = ya, enter the magnetic field at yb, leave at yc, and be detected at yd. We will denote
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the values of z at ya, yb, yc, and yd as za(= 0), zb, zc, and zd with the corresponding times

ta = t′, tb, tc, and td. We will assume that the beam is tightly focused and that there are

no significant px or pz terms. We will take the magnetic field as going along the z axis and

having the form

~B (~x) ≈ Bzẑ

Bz ≡
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

z (θ (y − yb)− θ (y − yc)) ẑ (3)

where θ is the unit step function. The non-trivial equations of motion are

ż = {z,H} =
pz

m

ṗz = {pz, H} = µz
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(4)

in the interaction region, with µz the component of the spin along the z axis. The solutions

are

pz (t) = pz (tb) + (t− tb)µz
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

z (t) = zb + (t− tb)
pz (tb)

m
+
µz

2m

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(t− tb)
2 (5)

Expressed in terms of the endpoints tb, zb, tc, zc

pz (t) = m
zc − zb

tc − tb
+ µz

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(

t−
tc + tb

2

)

= m
∆z

∆t
+ µz

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(t− t̄)

z (t) = zb +
∆z

∆t
(t− tb) +

µz

2m

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(t− tb) (t− tc) (6)

To first order in the transit time through the interaction region, the trajectory is a straight

line through the interaction region followed by a sharp kink up or down, as given by the

change in pz

∆pz ≡ pz (tc)− pz (tb) = µz
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

∆t (7)

When pz(tb) is zero the change in z is second order in the transit time

∆z =
pz (tb)

m
∆t +

∆pz
2m

∆t =
µz

2m

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(∆t)2 (8)

The velocity is given by

v ≡

√

(~x− ~xc)
2 + (~xc − ~xb)

2 + (~xb − ~x′)2

t− t′
(9)
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FIG. 2: Classical trajectory in an Stern-Gerlach experiment

Assuming that the angular deviation induced by the field is small, we have to lowest order

v ≈
y − y′

t− t′
=

∆y

∆t
(10)

tb = v
yb − y′

∆y
, tc = v

yc − y′

∆y
(11)

∆t =
∆y

v
= ∆y

m

py
(12)

⇒ ∆pz =
∆y

ν
µz

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(13)

We will usually be taking the limit as ∆y → 0 while the product ∆y ∂Bz

∂z

∣

∣

∣

z=0
is constant.

This will result in an angular change of direction of

∆θ =
∆pz
py

=
m∆y

p2y
µz
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

(14)

This gives for zd the position at the detection screen

zd ≈ L∆θ

L ≡ yd −
(

yc + yb

2

)

= yd − ȳ (15)

In the case of the original Stern-Gerlach experiment the magnetic moment of the silver

atoms was given almost entirely by the magnetic moment of the unpaired electron

~µ = −
e

mc
~s = −

eh̄

2mc
~σ = −µb~σ

µb ≡
eh̄

2mc
(16)

With α and β as the azimuthal and polar angles of the spin vector

zd ≈ −L
m∆y

p2y
µb
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

〈~σ〉
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FIG. 3: Expected versus actual distributions

= −L
m∆y

p2y
µb

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

cos (β)

= −zmax cos (β)

zmax ≡ L
m∆y

p2y
µb

∂Bz

∂z

∣

∣

∣

∣

∣

z=0
= vzT

vz ≡
∆y

py
µb
∂Bz

∂z

∣

∣

∣

∣

∣

z=0

T = L
m

py
(17)

where vz is the post-interaction velocity in the z direction and T is the time it takes to

travel from the interaction region to the detection plane. Isotropically distributed spins are

distributed as

1

4π
sin (β) dαdβ =

1

2
sin (β) dβ

=
1

2
d (cos (β))

⇒ p (cos (β)) =
1

2
(18)

giving a flat distribution

p (zd) = p (cos (β))
d cos (β)

dzd

=
1

2zmax
(θ (z + zmax)− θ (z − zmax)) (19)

And of course what is seen is nothing like that: instead of a flat curve, perhaps gently

rounded at the ends (if the initial beam is really a Gaussian in z) we see two relatively sharp

spikes at the far ends of the classical distribution. It is as if the magnetic moment is given

by µz = ∓µb with no intermediate values possible.
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PATH INTEGRAL ANALYSIS OF STERN-GERLACH EXPERIMENT

We now calculate the results in the Stern-Gerlach experiment without invoking the col-

lapse. We employ path integrals and limit ourselves to considering only a weak, well-localized

magnetic field, as above. We will compute the propagator for a general spin-dependent po-

tential, specialize to the Stern-Gerlach case, then compute the wave function as a function

of time under the assumption that the initial wave function is a minimum uncertainty Gaus-

sian. This will be enough to make the qualitative features clear. We will discuss possible

improvements at the end of this section.

Path integral calculation of propagator with spin

We begin with the Schrödinger equation for a particle with spin s represented by a spinor

with M = (2s+ 1)/2 components [44], with an M by M Hamiltonian H

ih̄
∂

∂t
|ψ〉 = H |ψ〉 (20)

⇒ |ψ (t)〉 = exp



−
i

h̄

t
∫

t′

dt′′H (t′′)



 |ψ (t′)〉 (21)

⇒ |ψ (t)〉 = |~x, s〉
∫

d~xd~x′
∑

{ss′}

〈~x, s| exp



−
i

h̄

t
∫

t′

dt′′H (t′′)



 |~x′, s′〉 〈~x′, s′ | ψ (t′)〉 (22)

where the |~x, s〉 represents some suitable basis in coordinate and spin space. In the case

we are interested in it may be broken into a kinetic energy part, T , diagonal in the spin

component and a potential part, V , which in general mixes the spin components

H = T + V (23)

For time independent H we may write the propagator K as

K (t, ~x, s; t′, ~x′, s′) ≡ 〈~x, s| exp



−
i

h̄

t
∫

t′

dt′′H (t′′)



 |~x′, s′〉

= 〈~x, s| exp (−iH (t− t′)/h̄) |~x′, s′〉 (24)

We break the exponential up into a product of exponentials over infinitesimal time intervals

K (t, ~x, s; t′, ~x′, s′) = lim
N→∞

〈~x, s| (exp (−iεT/h̄) exp (−iεV /h̄))N |~x′, s′〉
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ε ≡
t− t′

N
, tj ≡ t′ + jε (25)

The t0 = t′ and tN = t times are the starting and ending times respectively. We insert a

resolution of unity between each term in the product

K (t, ~x, s; t′, ~x′, s′) (26)

= lim
N→∞

∫

d~x1 . . . d~xN−1

∑

{s1...sN−1}

N−1
∏

j=0

〈~xj+1, sj+1| exp (−iεT/h̄) exp (−iεV /h̄) |~xj , sj〉

Sandwiched between two coordinate states the potential gives

〈~xj+1, sj+1|V |~xj , sj〉 = δ (~xj+1 − ~xj) 〈sj+1|V (~xj) |sj〉 (27)

We deal with the kinetic energy part of the Green’s function by inserting a momentum space

resolution of unity

1 =
∫

d~p
∑

{s}

|~p, s〉 〈~p, s| (28)

on both sides of the kinetic energy term

〈~xj+1, sj+1| exp (−iεT /h̄) |~xj , sj〉 (29)

=
∫

d~p
∑

{s}

∫

d~p′
∑

{s′}

〈~xj+1, sj+1 | ~p, s〉 〈~p, s| exp (−iεT/h̄) |~p
′, s′〉 〈~p′, s′ | ~xj , sj〉

=
∫

d~p
∑

{s}

∫

d~p′
∑

{s′}

〈~xj+1, sj+1 | ~p, s〉 〈~p, s| exp

(

−iε~p′2

2mh̄

)

|~p′, s′〉 〈~p′, s′ | ~xj , sj〉

Since

〈~p, s | ~x, s′〉 =
1

√

(2πh̄)3
exp

(

−i~p · ~x

h̄

)

δss′ (30)

the matrix elements for the kinetic energy are

〈~xj+1, sj+1| exp (−iεT/h̄) |~xj , sj〉 (31)

=
δsj+1sj

(2πh̄)3

∫

d~p exp

(

i~p · ~xj+1

h̄
−
iε~p2

2mh̄
−
i~p · ~xj
h̄

)

= δsj+1sj

√

m

2πiεh̄

3

exp





iε

h̄

m

2

(

~xj+1 − ~xj

ε

)2




We can now write the path integral explicitly

K (t, ~x, s; t′, ~x′, s′) =

lim
N→∞

∫

d~x1 . . . d~xN−1

∑

{s1...sN−1}

√

m

2πiεh̄

3N

× exp





iε

h̄

N−1
∑

j=0





m

2

(

~xj+1 − ~xj

ε

)2
↔

1 −
↔

V (~xj)







 (32)
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Propagator for Stern-Gerlach experiment

We specialize this to the case we are interested in: a spin 1/2 particle with a non-zero

magnetic moment and no charge. The Schrödinger equation is

ih̄
∂

∂t
ψi (t, ~x) = −

h̄2

2m
∇2ψi (t, ~x)−

∑

{j}

~µij · ~B (~x)ψj (t, ~x)

{j} = {−1/2, 1/2} (33)

Since the magnetic field is pointing along the z axis, we select the representation in which

the spin is diagonal along the z axis and write this as

ih̄
∂

∂t
ψi (t, ~x) = −

h̄2

2m
~∇2ψi (t, ~x) +

∑

{j}

µbBz (~x) (σz)ij ψj (t, ~x) (34)

We are not insisting that the wave function be either spin up or spin down – that would be

to invoke the collapse. We continue to see the wave function as including both spin up and

spin down parts, but treat each part separately for mathematical convenience. The up and

down components of the wave function will propagate like separate wave functions. At the

end of the calculation we will join the two halves together. We have

〈~xj+1, sj+1| exp
(

−
iεV

h̄

)

|~xj , sj〉 = δ (~xj+1 − ~xj)

(

exp
(

−
iεµbBz(~xj)

h̄

)

0

0 exp
(

iεµbBz(~xj)

h̄

)

)

(35)

Since the off-diagonal elements are zero, the sums over the sj telescope; we may therefore

write the propagator separately for the spin up and down parts

K± (t, ~x; t′, ~x′) = (36)

lim
N→∞

∫

d~x1 . . . d~xN−1

√

m
2πiεh̄

3N
exp

(

iε
h̄

N−1
∑

j=0

(

m
2

(

~xj+1−~xj

ε

)2
∓ µbBz (~xj)

)

)

So we may therefore write ψ as

ψ (t, ~x) =

(

∫

d~x′K+ (t, ~x; t′, ~x′)ψ+ (t′, ~x′)
∫

d~x′K− (t, ~x; t′, ~x′)ψ− (t′, ~x′)

)

(37)

Essentially we have taken the coupled equations in ψ±1/2 and reduced them to two indepen-

dent equations.

Per Schulman[29], we approximate the propagator as

K (t, t′) ≈

√

m

2πih̄fcl (t, t′)
exp

(

i

h̄
Scl (t, t

′)
)

(38)
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FIG. 4: Path integral calculation for Stern-Gerlach

where Scl(t, t
′) is the classical action from t′ to t and fcl(t, t

′) satisfies the equations (spe-

cialized from Schulman’s treatment to our case)

m
∂2fcl (t, t

′)

∂t2
= 0, fcl (t

′, t′) = 0,
∂fcl (t, t

′)

∂t

∣

∣

∣

∣

∣

t=t′

= 1 (39)

which implies

fcl (t, t
′) = t− t′ (40)

If the Lagrangian is no worse than quadratic in the integration variables, this is exact. For

the action we have

S (t, ~x; t′, ~x′) =

t
∫

t′

p2x (t)

2m
+
p2y (t)

2m
dt+

t
∫

tc

p2z (t)

2m
dt

+

tc
∫

tb

(

p2z (t)

2m
+ µz

∂Bz

∂z
z (t)

)

dt

+

tb
∫

t′

p2z (t)

2m
dt (41)

Substituting in the classical trajectory Eq. (6) we get

S (t, ~x; t′, ~x′) =
m

2

(x− x′)2

t− t′
+
m

2

(y − y′)2

t− t′
+
m

2

(z − zc)
2

t− tc

+
m (zc − zb)

2

2 (tc − tb)
+ µz

∂Bz

∂z

zc + zb

2
(tc − tb)−

1

24m

(

µz
∂Bz

∂z

)2

(tc − tb)
3

+
m

2

(zb − z′)2

tb − t′
(42)

We are primarily interested in the value of the z part of the action. Dropping terms

second order in the magnetic field we have

S(z) (t, ~x; t′, ~x′) =
m

2

(z − zc)
2

t− tc
+
m

2

(zc − zb)
2

tc − tb
+ µz

∂Bz

∂z

∣

∣

∣

∣

∣

z=0

∆y

ν

zc + zb

2
+
m

2

(zb − z′)2

tb − t′

12



=
m

2

(z − zc)
2

t− tc
+
m

2

(zc − zb)
2

tc − tb
∓mvz

zc + zb

2
+
m

2

(zb − z′)2

tb − t′
. (43)

Then

K(z) (t, z; t′, z′) =

√

m

2πih̄ (t− tc)

√

m

2πih̄ (tc − tb)

√

m

2πih̄ (tb − t′)

∫

dzcdzb (44)

× exp

(

im

2h̄

(z − zc)
2

t− tc

)

exp

(

im

2h̄

(zc − zb)
2

tc − tb
∓ i

mvz

h̄

zb + zc

2

)

× exp

(

im

2h̄

(zb − z′)2

tb − t′

)

Recalling tc = t̄ +∆t/2, tb = t̄−∆t/2 and discarding terms of order ∆t, we get

K(z) (t, z; t′, z′) =

√

m

2πih̄ (t− t′)
exp

(

im

2h̄

(z − z′)2

t− t′

)

(45)

× exp

(

∓
imvz

h̄

z (t̄− t′) + z′ (t− t̄)

t− t′
−
imv2z
2h̄

(t− t̄) (t̄− t′)

t− t′

)

Again dropping terms second order in the magnetic field

K (t, ~x; t′, ~x′) = K(free) (t, ~x; t′, ~x′) exp

(

∓
imvz

h̄

z (t̄− t′) + z′ (t− t̄)

t− t′

)

(46)

In other words the kernel looks as if part of the change in pz takes effect at the beginning

of the interaction region and the rest at the end (provided the interaction region is not too

long). If the interaction region is positioned 20% of the way from t′ to t, then 80% of the

change will appear to have taken place at tb , 20% at tc, which makes sense.

We have taken considerable advantage of the assumed simplicity — weak, constant in

time, sharply delimited in space — of the magnetic potential. If we were facing a more

realistic spin-dependent potential, say a time-dependent one, it would make sense to compute

the path integral using a variational approach. At each time slice we would have a 2 by 2 orM

byM matrix to diagonalize. The matrix rotations required to do the diagonalizations would

define a time-dependent “classical” solution between the specified endpoints. Approximating

the integrals by Gaussians would give the first quantum corrections. Essentially we would

expect to get the Coherent Internal States solutions of Cruz-Barrios and Gmez-Camacho

[30, 31], if from a slightly different direction.
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Wave function in Stern-Gerlach experiment

We take the input wave function as a minimum uncertainty wave packet, a Gaussian with

initial direction along the y axis at t′

ϕ (t′, ~x′) ≡
1

(πσ2)3/4
exp

(

−
(~x′ − ~xa)

2σ2

2

+ i~k · (~x′ − ~xa)

)

, ~xa ≡ (0, ya, 0) , ~k ≡ (0, h̄ky, 0)

ψ (t′, ~x′) ≡

(

ϕ (t′, ~x′)χ+

ϕ (t′, ~x′)χ−

)

(47)

Applying the kernel (46) to this and integrating over ~x′

ϕ± (t, ~x) =
1

(πσ2)3/4

√

1

f (t− t′)

3

exp

(

−
(~x− ~xa)

2

2σ2f (t− t′)
+ i

ky (y − ya)

f (t− t′)

)

× exp









∓i
mvzf (t̄− t′) z

h̄f (t− t′)
−
ih̄

(

k2y +
(

mvz
h̄

t−t̄
t−t′

)2
)

(t− t′)

2mf (t− t′)









f (t) ≡ 1 +
ih̄t

mσ2
(48)

This gives a probability of finding a particle of either spin as

p (t, ~x) =

√

√

√

√

1

πσ2 |f (t− t′)|2

3

exp

(

−
x2 + (y − (ya + vy (t− t′)))2

σ2 |f (t− t′)|2

)

×

(

exp

(

−
(z + vz (t− t̄))2

σ2 |f (t− t′)|2

)

|χ+|
2 + exp

(

−
(z − vz (t− t̄))2

σ2 |f (t− t′)|2

)

|χ−|
2

)

|f (t)|2 = 1 +

∣

∣

∣

∣

∣

h̄t

mσ2

∣

∣

∣

∣

∣

2

(49)

The |f(t)|2 terms tells us the smaller the initial width σ of the beam the faster it diverges,

as we would expect from the uncertainty principle.

In this last equation we see the expected two-humped distribution, with peaks at z =

∓vz (t− t̄). The difference between this and the collapsed version is subtle but definite:

in the collapsed version the wave function is either spin up or spin down: there is no

relative phase information between the two. Here the wave function is both spin up and spin

down. The relative phase information is preserved. There is an exponentially small spin-up

component to be found in the spin-down direction and vice versa. The collapse-free density

matrix (looking at the z-dependence only) is given by

ρ(collapse−free) (z) =

(

|ϕ+ (z)|2 |χ+|
2

ϕ∗
+ (z)ϕ− (z)χ∗

+χ−

ϕ∗
− (z)ϕ+ (z)χ∗

−χ+ |ϕ− (z)|2 |χ−|
2

)

(50)
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The collapsed wave function has the density matrix

ρ(collapsed) (z) =

(

|ϕ+ (z)|2 |χ+|
2 0

0 |ϕ− (z)|2 |χ−|
2

)

(51)

The collapse-free and collapsed versions have the same trace and therefore the same proba-

bility for detection at the detection plane.

The off-diagonal terms are different. But as φ+ is centered on the spin-up beam and

φ− is centered on the spin-down beam, the amount of spatial overlap between the two is

exponentially small. Except near the beginning of the interaction region, the off-diagonal

terms will be nearly zero. This implies that as a practical matter it would be tricky to

distinguish between the two. We therefore understand why, even if the collapse-free approach

is in fact correct, the invocation of the collapse still gives good results; the two density

matrices are almost identical except near the interaction region. Invoking the collapse of the

wave function is unnecessary, but almost harmless. The major difference between the two

approaches is (obviously) that the collapse-free approach does not invoke the collapse. Since

space quantization still appears, it would seem that the step “collapse the wave function” is

not necessary to produce that.

Still, if we have lost a collapse, we have gained a catastrophe. If we monitor p (t, ~x) ≡

|ψ (t, ~x)|2 as it moves through the interaction region it will acquire at the beginning a small

dimple in the middle, as the two spins begin to separate. If we take the centroids of |ϕ+|
2 and

|ϕ−|
2 as defining the classical paths, on encountering the magnetic field the initially single

path splits into two. In the language of catastrophe theory[32] this is a cusp or bifurcation

catastrophe.

There is still a sense in which the collapse still takes place. When the particle is ultimately

detected it will be found definitely at one location, within one of the two Gaussian beams.

This takes place as far past the interaction region as we have patience to wait for the particle.

It creates no ambiguity as to what basis to use.

DISENTANGLING THE COLLAPSE

If we are correct in thinking that the standard formalism, vigorously applied, will generate

space quantization without invocation of the collapse, then we would like to understand what

changes in that formalism might recreate the necessity for the collapse, the better to locate
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the crux. Our suspicion is that the key problem is the inadvertent projection of classical

ideas onto the quantum realm.

It is conventional in discussions of Stern-Gerlach experiments to talk about the spatial

and spin parts as if they were distinct. The spatial part is treated as a kind of carrier wave;

the spin as the signal impressed on it. The schematic diagram of the Stern-Gerlach experi-

ment will almost inevitably look like a road map, with forks at each piece of experimental

apparatus. It is as if the particles are very small cars, each with a propeller strapped on

top. Mostly the cars travel along fixed roadways, the pathways determined by the collapse

of the wave function. At critical junctions, their drivers check which way the propeller is

pointing at the instant and are so guided, electing the spin up or spin down or the spin

left or spin right pathway accordingly. While the actual formalism treats spin and spatial

components as entangled, the more informal discussions that surround each set of formal

steps often treat spin and space as if they were separate.

The Schrödinger equation has a (free) spatial part and a spin-mixing part. We will

therefore attempt to solve this using a deliberately incorrect ansatz (modeled on the lines of

the intuitive picture). We will write the wave functions as composed of disentangled space

and spin parts

ψ (t, ~x) = ϕ (t, ~x)χ (t) =

(

ϕ (t, ~x)χ+ (t)

ϕ (t, ~x)χ− (t)

)

(52)

In the case of the path integral calculation, the initial wave function had, by assumption,

this form. But an effect of passing through the magnetic field was to turn it into a more

complex wave function with different spatial dependence in the spin up and spin down parts.

With this ansatz, Eq. (34) gives

h̄
∂

∂t
ϕ (t, ~x)χi (t) = −

h̄2

2m
∇2ϕ (t, ~x)χi (t)− ~µij · ~B (~x)ϕ (t, ~x)χj (t) (53)

If the interaction term did not mix the spin and space variables the ansatz would work. If

the separation of variables were possible, the averages would be the separation constants.

Using the averages is therefore a reasonable way to handle our incorrect ansatz. If we take

the average of the spin part as giving the effect of µ on φ and the average of the magnetic

field as giving the effect of φ on χ we get

ih̄

(

∂

∂t
ϕ (t, ~x)

)

= −
h̄2

2m

(

∇2ϕ (t, ~x)
)

− 〈~µ (t)〉 · ~B (~x)ϕ (t, ~x)

ih̄
∂

∂t
χi (t) = −~µij ·

〈

~B (t)
〉

χj (t) (54)

16



where

〈~µ (t)〉 ≡ 〈χ| ~µ |χ〉 = −µb

∑

{i,j}

χ
†
i (t) ~σijχj (t) (55)

〈

~B (t)
〉

≡ 〈ϕ| ~B |ϕ〉 =
∫

d~xϕ† (t, ~x) ~B (~x)ϕ (t, ~x)

The initial value for 〈~µ〉 is determined by the initial value for the spin, which may point in

any direction. To lowest order in B, χ is a constant, therefore 〈~µ (t)〉 = 〈~µ (t′)〉 is, giving

ih̄
∂

∂t
ϕ (t, ~x) = −

h̄2

2m
∇2ϕ (t, ~x)− 〈~µ (t′)〉 · ~B (~x)ϕ (t, ~x) (56)

At this point the equation for φ is what we had in the last section for each component of

ψ, except that the ~µ · ~B will span a range of values. Therefore for fixed ~µ we get the wave

function in Eq. (48) with the replacement ∓vz → 〈µz〉
vz
µb

ϕ (t, ~x) =
1

(πσ2)3/4

√

1

f (t− t′)

3

exp

(

−
(~x− ~xa)

2

2σ2f (t− t′)
+ i

ky (y − ya)

f (t− t′)

)

× exp

(

i
〈µz〉

µb

mvzf (t̄− t′) z

f (t− t′)
−

ih̄k2yt

2mf (t− t′)

)

(57)

with probability

p (t, ~x) =

√

√

√

√

1

πσ2 |f (t− t′)|2

3

exp





−
x2 + (y − (ya + vy (t− t′)))2 +

(

z − 〈µz〉
µb
vz (t− t̄)

)2

σ2 |f (t)|2







(58)

This is a Gaussian centered at z = 〈µz〉
µb
vz (t− t̄), which spans the range from the spin up to

the spin down values. For isotropic spin distributions it will be distributed as cos(β). To get

the full probability distribution we convolute the Gaussian with the flat initial distribution

for the probability, giving the “expected” classical distribution of Fig. 3.

In other words, if we assume the spin and space components are disentangled we repro-

duce the classical prediction. This makes sense. The program of decoherence suggests the

boundary between classical and quantum modes of analysis may be defined by the point at

which it becomes acceptable to replace entangled quantum wave functions with disentangled

classical billiard balls and their cuesticks [45].

EXPERIMENTAL PREDICTIONS

The chief advantage of the collapse-free approach is that it is simpler and less mysteri-

ous. It appears that if we model the finite width of the beam explicitly and refrain from
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FIG. 5: Schematic Stern-Gerlach with recombination

invoking the collapse, but otherwise proceed as usual, we will see space quantization appear

spontaneously as a result of coherent self-interference effects within the beam. We would

like to identify experimental differences between the two approaches as well.

There are two detectible differences between the collapsed and the collapse-free ap-

proaches. One is that in the collapse-free approach we take the off-diagonal elements of

the density matrix as non-zero. This implies that the two (or more) separated beams are

still in principle coherent and if brought together again, would be able to interfere with one

another. For instance, if we start with a spin +x beam, split it in the z direction, recombine

the two beams, and check the spin along the x direction, we should find it still in a +x

state. (See Fig. 5 for a very schematic illustration.) This line of attack as been explored

by Englert, Scully, and Schwinger in their series of papers [33, 34, 35]: “Is Spin Coherence

Like Humpty Dumpty?” They show that this is possible, although not particularly easy.

Maintaining phase coherence while separating and recombining the beams is non-trivial.

The other (in principle) detectible difference is that the location and shape of the final

wave function is slightly different in the collapsed and collapse-free cases. The most obvious

difference comes from the finite length of the interaction region. In the collapsed case the

beam encounters the magnetic field and at some point collapses and heads either up or

down, as its spin determines. If the interaction region is ∆y long, with a field exerting force

mµz
∂Bz

∂z
on a particle traveling with speed ν (see Fig. 6), we will see a change of direction

given by vz. Per Eq. (6) we have for the displacement in the z direction

∆z ≡ zc − za = zc =
vz

2
∆t =

vz

2

∆y

ν
(59)

And we have that the centroid of the wave function goes in the direction ~v = (0, v, vz)

after this. This lets us backtrack the resultant course, giving an effective location for the
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FIG. 6: Location of collapse

point of collapse as

ycollapse = yc −
v

vz
∆z = yc −

∆y

2
=
yb + yc

2
= ȳ (60)

so we have a well-defined location for the collapse, as the center of the interaction region.

There is no fundamental requirement that ycollapse be exactly the average of the start and

end of the interaction region. If we had been less cavalier in our approximations or looked at

a more complex situation we would see corresponding adjustments in the value of ycollapse.

The collapse-free approach further predicts that zd, the centroid of the detected beam, will

be at zd = ∓vz
v
(yd − ycollapse).

Ironically therefore, it is the collapse-free approach which gives a well-defined location

for the collapse of the wave function [46]. It is at the intersection of the backtracked output

paths, with the paths defined by their centroids. The thus defined collapse is not in general

actually on either of the paths itself. It is a virtual location (appropriately enough) not

a real one. In general, in any particular experimental case, the collapse-free approach will

select one specific location as the point of collapse [47]. And this location will in turn define

the expected target points. If the centroids are higher or lower than this, the collapse-free

hypothesis is falsified.

The view we are led to by this is that the collapse of the wave function represents

a kind of approximation scheme. It gives a stick figure representation of a more detailed

calculation. It cannot itself define the location of the collapse, but it does give a qualitatively

correct representation. To get a correct analysis the path integrals used above or some other
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technique must be employed. So long as the width of the beam is modeled explicitly and

entangled wave functions are allowed, space quantization should be seen.

We have used the simplest possible treatment consistent with reproducing the qualitative

features. A number of possible improvements in the treatment of the input wave, magnetic

field, and detectors are obvious. We could model the input wave not as an elementary

Gaussian but an arbitrary wave form, perhaps modeled as a sum over Gaussian wavelets

as described in Kaiser[36]. We could go to considerably greater lengths in describing the

magnetic field: use second derivative and higher terms in z (or for that matter, include the

constant part), include the necessarily present x and y components, turn the field on and off

a bit less abruptly, allow the field to vary in time, model the magnetic field itself in quantum

mechanical terms. And we could model the interaction with the detector wave functions

explicitly, perhaps treating them as [rather narrow] Gaussians.

DISCUSSION

We conclude that we do not need to invoke the collapse of the wave function to explain

the space quantization seen in the Stern-Gerlach experiment. Provided that we model

the apparatus in sufficient detail, space quantization will appear as a result of coherent

interference within the beam.

The term “in sufficient detail” means that we explicitly include the finite width of the

beam, refrain from limiting the set of allowed wave functions to only those with space and

spin components disentangled, and model the inhomogeneity in the magnetic field to at

least first order in z. The minimum width of the beam is of course set by the Heisenberg

uncertainty principle: if the uncertainty ∆pz is to be small enough for a well-defined beam

to exist, then the width ∆z has to be at least h̄/∆pz. The requirement to allow entangled

wave functions is also obvious. [48]

We have therefore addressed two of the three problems with the collapse of the wave

function. Except for considerations of calculational efficiency, there is no preferred basis.

And we may give a well-defined (if virtual) location to the collapse of the wave function.

This implies that the formalism – at least for the Stern-Gerlach experiment – is “intuition-

free” and therefore complete in a formal sense. (We therefore find ourselves in concurrence

with the position of Fuchs and Peres[37]: “Quantum Theory Needs No ‘Interpretation’.”)
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The next question is “If the collapse is not necessary, why has its inclusion not done

harm?” Our answer is that it represents in most cases a very good approximation. The

spatial separation of the two spin components will usually take place rapidly. Once this has

happened, the difference between the calculation with and without collapse is minute. The

collapse is like homeopathic medicine. It does no good but the difference between using it

and not using it is so small it does little or no harm.

Of course homeopathic medicine, while relatively harmless, is not free. The collapse

complicates analysis both in terms of principle – what exactly is it? – and in terms of practice

– at what point in the trajectory shall we invoke the collapse? Pending an experimental

disambiguation, the chief arguments in favor of the collapse-free approach are that is simpler

and less mysterious, has no adjustable parameters, requires the invocation of no new forces,

and does not create the “preferred basis” problem. The greater conceptual simplicity of

the collapse-free approach may be of some benefit in spintronics and quantum computation

applications.

We see the collapse of the wave function as defining the boundary between the parts

of the problem space which must be handled quantum mechanically and those which may

be treated by classical methods. It is not a physical boundary – indeed the same physical

region might be treated in some ways quantum mechanically and in others classically (as we

have done here, by treating the magnetic field in classical terms while treating the particles

traveling through it quantum mechanically). The collapse is something that exists in our

approximations, our software, and our minds. It does not, however, exist in the phenomena

themselves, which are purely quantum mechanical in character.

We have only dealt with one case of the “collapse of the wave function.” We have not

looked at the optical Stern-Gerlach effect[38, 39, 40, 41, 42] and we have not looked at other

phenomena involving the collapse of the wave function, i.e. the quantum Zeno effect. It

would be interesting to see to what extent the approach here may be generalized. We suggest

as a general rule than whenever there is a force giving a ∆p, the corresponding q dimension

should be modeled explicitly, as a Gaussian distribution or whatever seems appropriate.

We have also not looked at elaborations on the basic Stern-Gerlach idea. One amusing

variation is to ask what might happen if the beam is sent through a “sandwich” of alternating

layers of magnetic fields with slopes pointing in the x and z directions. We note that the

condition for the beam to split is that the impulse given to the beam µ∂B
∂z
∆t be significantly
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greater than the uncertainty in the momentum in the z direction of the beam ∆pz ≈
h̄
∆z

= h̄
σ

[42]. If the transition is too smooth, the beam will not be split. But we should suddenly see

a large number of small beams split off – each new (and sufficiently crisp) boundary should

produce a new “collapse” – if the condition µ |∇B| ≫ h̄
σ∆t

is met. An interesting thing here

is that the condition is dependent on the width of the beam; the wider the beam, the earlier

we should see the effect.

While we have focused on the non-relativistic case the same considerations apply to

quantum electrodynamics. The propagators are different; the principles the same.
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nite prediction and the collapsed approach merely implies that it must be somewhere in the
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interaction region, in our nomenclature somewhere between yb and yc.

[47] Unless we use such diabolically twisted magnetic fields that the backtracks from the output

beams have no point of intersection.

[48] Although we have seen in the literature remarks which suggest this point has been briefly lost

sight of: e.g. “If we had achieved absolute separation in some region (so that the tails of the

two wave packets did not overlap) then we would have had a diagonal density matrix in that

region. This would have precluded attainment of a pure case, off diagonal density matrix, upon

recombining the beams further down-stream.”[43] If achieving an absolute separation between

the parts of a wave function precluded subsequent interference, the double-slit experiment

would not work.
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